pacman::p_load(sf, sfdep, tmap, tidyverse)In class exercise 6
#1 Load Data
Let’s start by importing Geospatial data
hunan <- st_read(dsn = "data/geospatial",
layer = "Hunan")Reading layer `Hunan' from data source
`/Users/keredpoh/Desktop/keredpoh/IS415-GAA/In-class_Ex/In-class_Ex06/data/geospatial'
using driver `ESRI Shapefile'
Simple feature collection with 88 features and 7 fields
Geometry type: POLYGON
Dimension: XY
Bounding box: xmin: 108.7831 ymin: 24.6342 xmax: 114.2544 ymax: 30.12812
Geodetic CRS: WGS 84
Next, Aspatial data
hunan2012 <- read_csv("data/aspatial/Hunan_2012.csv")hunan_GDPPC <- left_join(hunan, hunan2012) %>%
select(1:4, 7, 15)#2 Visualising plot
tmap_mode("plot")
tm_shape(hunan_GDPPC) +
tm_fill("GDPPC",
style = "quantile",
palette = "Blues",
title = "GDPPC") +
tm_layout(main.title = "Distribution of GDP per capita by distribution",
main.title.position = "center",
main.title.size = 0.9,
legend.height = 0.45,
legend.width = 0.35,
frame = TRUE) +
tm_borders(alpha = 0.5) +
tm_compass(type = "8star", size = 2) +
tm_scale_bar() +
tm_grid(alpha = 0.2)
#3 Computing using different Contiguity neighbour methods
queen method
cn_queen <- hunan_GDPPC %>%
mutate(nb = st_contiguity(geometry),
.before = 1)rook method
cn_rook <- hunan_GDPPC %>%
mutate(nb = st_contiguity(geometry),
queen = FALSE,
.before = 1)#4 Contiguity weights queen method
wm_q <- hunan_GDPPC %>%
mutate(nb = st_contiguity(geometry),
wt = st_weights(nb),
.before = 1)